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On Gaussian Distribution

Gaussian distribution is defined as follows:

_(x-u
()= ———e
- 2710

X

The function f, (x) is clearly positive valued. Before calling thiswéition as a probability

density function, we should check whether the areder the curve is equal to 1 or not.

R1.1: Area under Gaussian Distribution [Signal Anaysis, Papoulis]
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This shows thatf, (x) is a valid probability density function.

R1.2: Mean and Variance Calculation for Gaussian Bitribution;

Mean: It can be noted that the distribution is symmeti©und x =4, , that is
f (u, +x)=f, (1, —x). We know that the mean value should be locatedeatenter of

symmetry thenX =y, .

We can show this result as follows: By a simple ngjea of variables, we get
X = [ X, 09 =] (g4, + %), (14, + X =[ (1, =) f, (4, =X)dx. But since we have
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L +X) = (1 =%, X= (1, +X)F, (1 + X)dx =] (1, =0, (1, + 0k, then
2% = [ (1 +X) T, (1 + X)AH] (12, =) £, (44, +X)dx = 24, .
Variance: This is more tricky, [Probability, Papoulis]. Tlerea under the Gaussian

_x=p)?
\/Lze 20% gx=1. Now taking derivative of this
2mo,

distribution is equal to 1, that iﬁ

relation wrt tou , we get

d 1 _(x-p)?

e 2 dx=0
du ‘[ 2102

_(x-p)?

271702 J(Xg_fﬂ)e 272 gy =0

The last equation can be written ﬁ&—u)f (X)dx =, dhowing one more time that

the mean of Gaussian distribution yis Taking derivative of j(x—,u)f ((X)dx= 0

relation  with  respect to p  for a second time, we get

_ 2
J'(X é’) fx(x)dx+j(—1)fx(x)dx:O, showing that the variance of Gaussian
g ~ -

X

distribution iso?.

Taking derivative wrt to a “constant” (such asin here) is a powerful calculation/proof
tool. This process can be done if the relation whderivative is taken is valid for a
continuum of i values. In our case, the area under Gaussianbdisbn is 1 for any
_(x-w)?

e 2% dx=1is valid for Ou.

1

\21o?

A second note is on the interchange of derivativensegral operators. This step looks
innocent but it is indeed treacherous. We haveestdwthe interchange in general. If you
have one sided or double sided integrals, (Onedditegral has upper or lower limit as
+ oo, double sided integrals have upper/lower limits-as and « .); the integrals may or
may not converge. The interchange of integralsevivetives operators is the interchange
of two limiting operations. (Remember derivativealso defined at a limit ofh - 0 or
1/h - ) . One has to be careful about this interchafde integrals studied in the
probability course in general behave nicely (pwsitand unit area functions). But we

value of u. Hencel () = |
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should always be careful when we exchange operateodving infinite or infinitesimal

guantities.

R1.3: The distribution of y=ax +b where x is normaldistributed:
The distribution ofy:ax+b can be expressed using the fundamental theorem for

functions of random variables:f (y)—ﬁf (y b . When the definition for
2 a a

Gaussian density is substituted fiy(x) we get

a _(y-b-aw)®
(y) — 207 — 1 e 2a’c?
|a| | 1/ 2202

From the last equation, we note that is also Gaussian distributed with mean

H 2 .2
(ay, +b)and variancea“oy, .

We reach an important conclusion that by scaling bhiasing a Gaussian r.v., we get
another Gaussian r.v. with different mean and waea

The mean and variance of the new Gaussian randeombiea can be easily calculated
using expectation operatof) = E{y} = E{ax+b} =ax, +b (and a similar relation for

variance). And the distribution of can be written by using the calculated mean and
variance. We know that if a random variable is Gars distributed, we only need to
calculate its mean and variance to write the distron. As an example let: N (01)
(Gaussian distributed or normal distributed witlrozenean and unit variance) , then
w=10z-10 is N(-10,100) since the mean d0z- 18 -10 and its variance is

E((w-W)?} = E{(02-10) - (-10)f} = E{(102)?} =100E{z%} =100:s

R1.4: Moment Generating Function:
Let z be zero mean, unit variance Gaussian distributionN (01). The moment

Z2

generating function okzis ®(s) = E{e¥} :ij'esze7dz . We can writesz-Z/2 as a

N2
perfect square and a correction term as follows:
2 -
—(%—sz)= (Z ZSZ)— (2 25) . This process is known as completing the

square and frequently used. When this relation ubsttuted to ®(s), we get
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ZZ 2

‘2dz=e?. (The moment

(z- S)

1 2 <1
¢(s)=ﬁjee2dz e? mje Zﬁje

generating function is valid for alvalues.)

When x is a Gaussian random variable with mgaand varianceog®, x:N(u,0?);

then we know thatx can be written ax=+/0? zt py where z:N (02). The moment

2 .2

- s(mzﬂz) Sﬂ+s§
generating function ok is equal o®,(s) =E{e”} =Ke - }=e

R1.5: Higher Order Moments of Gaussian Distribution
X

su
Let x: N(4, o?), we know that®,(s) =e 2 . Using power series expansionedf

00 k

. z .
which is e” = ZF we can writed, (s) as follows:
k=0 K

(su+s°o?® [2)? L (s ‘o 12)®
2 6
The coefficient o in P, (S) is equal tE{X}/K!. Whenx:N(0,07), we have

® (S)=1+(su+s°c’12)+

(2n)lo™

— _ 2n -
E{ Xk} = mk = W - 135(2n 1)0 k 2n

0 k=2n+1

R1.6: Addition of two independent Gaussian r.v.’sz=x+y, is a Gaussian r.v.
When two Gaussian distributed independent randomiablas x:N(y o’ ) and

y:N(/Jy,aj) are added, the resultant distribution is also Gans distributed

z: N(py +,uy,ax2 +0§), where z=Xx+y. . This is a property of great importance in

practice.

This result can be easily shown wusing moment géngra functions.
®,(s) = E{e¥} = E{e**"} = E{e¥}E{€”} where we have used the
independence ok andy in the last equality. From R1.4, we can substitae moment

generating function of Gaussian distribution and t ge
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su +Szaf su +ﬁ S(Hy+ 1y )+

o (9=e 2e 2 =e 2. Comparing this result with R1.4,

we conclude thatz=x+y is indeed Gaussian distributed with mean + 4, and

s’ (0%+0?)

varianceo; +a,.

In the next section we define joint Gaussianity ahdw that arbitrary linear combination
of Gaussian random variables result in Gaussidntalision.

Jointly Gaussian Random Variables

We first examine two random variables and thenrekt® random vectors which is the
joint distribution ofn random variables.

Two random variablex and y are called jointlyGaussian if their joint density can be
written in the following form:

f(Xy)= 1 ex{ 1 !(x—/;lx)z _gp XK (y—/Jy)+(y—/2Jy) D

meay 1_p2 2(1_102) o axay ay

X

2
The functionfy(xy) is clearly positive valued and of finite area ¢&n€ X upper
bounded bye™ for large x), therefore with proper scaling it dae utilized as density
function. Note thatf,,(x,y) is a function of two independent variables and fias

parameters{ /., i,,0%,0,,0}. We will attach the labels of mean, variance and
correlation coefficient to these variables aftestifying why we do so.

An alternative (but equivalent) definition for joi@aussianity can be given as follows:

and y are called jointly Gaussian & =w, X+, y is Gaussian distributed for amglue

of @, andw,. Herez is the standard univariable Gaussian distributiat we have

previously examined. (Iso called univariate Gaugswe take granted the equivalence of
two definitions and proceed without a proof for nof@he function g(®,,0,) and

related descriptions given in R2.4 (given below) ba formulated as proof.)
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R2.1: Definition in matrix form:
The definition can also be written as follows:

po,a, ] [(x= 1)
(=) (v~ uﬂ{ . } Ly-ﬂﬂ}

po,0, ;

1
fy (X, y)= exp) -

21,0 ,\1- p* 2

Note that the argument of the exponential mimice tine dimension Gaussian
distribution. If you try not to see the terms rethtoy variable then you have

[x- 1) {”X } FX_””} e
= expl H XZHI

2 2

ex

From here we feel that multi-dimensional Gaussimtridutions is linked to univariate
(single variable) Gaussian distribution, which et whose details are examined below.

The equivalency of matrix definition given in R2dLthe original definition follows very
simply by calculating the matrix inverse in the matefinition:

o  poo, o 1 o -poo,| 1 Vo -ploo,
po.o, O, co.(1-p*)| - po,0, o? @-p*|-ploo, 1o,

y X

R2.2: Definition for zero mean jointly distributed Gaussian r.v's.
When zero is substituted for the mean we get thevitng

2 -1
poo, | [x
1 I y]{PUxU ay } M

fy (X y)= exp -
? 210,01~ p* 2

If new random varlables<2 and y, are defined fromxand y where x and y are
jointly Gaussian r.v.’s with zero mean (the jgodf is given above) such that

X, = X+X

Yo =Yy+Yy
The distribution of new random variables i, (x,y)=f, (x-Xy-y) (by
fundamental theorem) and we see that the distabubf x, and y2 has the form of

general joint Gaussian density. Since mean valubsshift the center of symmetry to a
point on (x,y) plane, sometimes we prefer to workhvzero mean Gaussian distribution
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and say that this result is also valid for non-zaean Gaussian distributions. This is due
to the mentioned shift in the center of symmetrye Wave some examples of this
situation in these notes. s

R2.3: Two independent Gaussian r.v.’s are jointly @ussian
Let x and yare independent Gaussian distributed zero mearomandariables. (As

noted in R2.2, the value of the mean is not imparia this argument. We prefer to take
the mean values as zero to simply the presentatidren f, (x,y) = f,(x) f,(y) and

when the definition for the univariate Gaussiantribgtion is inserted, we get the
definition of joint Gaussian distribution for zemean variables. Since the joint density of
two independent Gaussian random variables can leenvin the form required by the
the joint distribution of Gaussian densities, tmdapendent Gaussian random variables
are indeed jointly Gaussian. (This is not very sisipg, the labels of the distributions
give away the final conclusion.)

A more surprising result is the next onexland y are known to be Gaussian distributed
(but not independent), the joint distribution gfand yis not necessarily is Gaussian.
That is if marginal densities of and y are Gaussian, the joint densityfand y is not

necessarily Gaussian.
A simple example is as follows. Let: N(0,1) andy =cx . Herec can take the value of

1 and -1 with equal probability. It is not veryfaitilt to show that (for EE230 students)
that yis also N(0,1). Clearlyy and X are related to each other through a random

mappingg. Therefore>~< andy are not independent. Furthermore the conditiorsithen
of y given X is 050(y-1) + 6.56(y+ 1). We show in R2.8 that i¥ and>~< are jointly
GaL;ssian distributed, they given X is always an univariate EBaussian distribution.
Therefore the distribution ;‘oy given X which is 055(y—-1) + 055(y + 1) gives away
that X and y are m)tjointly~ Gaussian. For a constructive example demlability,

Papoulis].

R2.4: Moment Generating Function of joint Gaussiarmn.v.’s X and vy (zero mean)

+ [SX Sy] )
Independent CaSGI(D(SX, Sy) = E{eSXX svy} = E{e L’}} is equal tOE{eSXX} E{esyy Yoy
independence. Then
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2 2,22
(5.5.) 5><X+SX2§XZ syy+sy2,jy2 . i
d(s,,s,)=¢€ e = e
]
y

Dependent Caselet X and y' be independersero mean Gaussian random variables.
Lets define the random variablgsand y from X and y' as follows:

X=ax

1
y:cz('+dy' (1)

and lets define an arbitrary looking functig@®,,©, ag follows:
9(9,,0,) = E{exp(0,x+0,y)}
= E{exp(0,ax'+0, (cx+dy ))}
= E{exp((©,a+0,c)x+0 ay )}
= Eexp((©,a+0,c)X)}E{exp(©,dy )}
=9,(0,a+0,0)®,.(0,d)
Here ©,,0, are some scalars. When the moment generatingidasdor X andy' is

inserted in the last equation, we get:

9(0,.0,)=®,(0,a+0,0)®,(0,d)

1(exa+eyc)2 E(eyol)2
2 eZ

%(O§a2+26xeyac+6)§(cz+d2))

Now we interpretg(©,,0, )and establish its connection with(s,,s, . The moment

generating functiond(s,,s,) = E{e>>” Jis defined fors, ands, values for which the

X

expectation result is finite. For univariate Gaussiistributions such ax', ®,.(s,)
function is defined for all compleg,. values. The same is also valid fgr variable. We
can then say thag(®,,0, Jjunction is defined for arbitrary complex valuedins of

©,,0,).

Since the parameters of(©,,0, fiinction can be arbitrary, we choose to relabeithe
asO, =s, andO, =s, to get:
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9(0,,0,) | ' = E{lexp(s,x +s5,y)} = @(s,,5))

and we get the following for the moment generatingefion of X andy.

—(s a’+2s,s ac+s; (c*+d?)) )

CD(SXS) e?

Next we use the fundamental theorem to express #tgbdition of X and y. We can
also invertd(s,,s, )given in (2) to get the distribution qc‘ and y, but we prefer using

the fundamental theorem instead of inverse Lafgiaresforms.

Rewriting equation (1) in the matrix form, we get thowing:
X| ja 0|X :>x'_ 1/a 0 || x
y c di|y y' —-c/ad 1l/d|y
Then
1 x1 ¢ _ C1(x) 11, c Y
fy (X, y)_ITI x-y.(g,ay ax)—AeX;{ E[Ej ]exp{ Z(dy o j] )

Here J is the Jacobian (which i&=ad) andA is a scalar whose exact value is not of
interest for now.

Finally we fix (a,c,d) given in (1) to some speacialues.
a=o,

C=p0,
=0,\@-p?)

Then (2) and (3) become

f(s Oy +25Xsy,00 gy +s ) )

®(s,,s,) =€

- ol X Y 3
fy(XY) Aexp{ 2(1_’02)[03 2,000 +02 D )

Xy y
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From (2’) and (3’), we get the moment generatingction of jointly distributed Gaussian
zero mean random variablgsand y.

R2.5: Moment Generating Function of joint Gaussiar.v.’s X and y (non-zero mean)

Let X and y' be jointly distributed zero mean Gaussian randonabkes. The moment

generating function of~<' andy' is given in R2.4 equation (2’). Define new random

variables as
X = X+X

y =y+y
The moment generating function gfand y can be written as follows

CD(SX, Sy) — E{es>(X+syy} — E{esx(x'+7<)+5y(y'+)7)} — eSXX+Sy)7(DXIy'(SX’ Sy)

which is
122, 2 2
Tre T — 2s,8, 00,0, +S,0%)
—  SX*s, Y Z(Sxax xSyPOxTy ¥Sy0y
O(s,,s,)=¢€ e
Note that wheno = (@he moment generating function given in the lasta¢ion reduces
to the one found for the independent variablesamR

R2.6: Correlation coefficient between x and v ip.
We know that the correlation coefficient between mandvariablesx and y by its

definition is not effected by the mean values pf and y. We also know that

2

0
E =
{ xy} Fve

Gaussian random variables (with zero mean) and eadcuts partial derivative as
follows:

yCD(SX,Sy) lsx=sy=0. We take the moment generating function of joint
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—ai; / CD(% Sy) = 6—2 e;(sfof +25,8,00,0,+S,05)
] axay
— 0 2 4 %(§03+2§<5ypaxay+§ag)
oy (8.0x +8,00,0,)€
1 1
(Si05+25,8,00,0,+5,07) ~(Si0%+25,8,p0,0,+507)
— ) 2 2 B

When zero is substituted fa, and s, we get E{xy} = po,0, and from here we see
E{xy}

g

Xy
correlation coefficient for zero mean random vdeab Thereforep appearing in the
definition of the joint density is the actual valokcorrelation coefficient betweex and

that 0= . Note that right hand side of the last relationthe definition of

y . We call this parameter as the correlation coeffic

R2.7: If the correlation coefficient of jointly Gaussian distributed r.v.’s is zero, then
random variables are independent.

In R2.5 we have noted that “Note that whers th@ moment generating function given
in the last equation reduces to the one foundheindependent variables in R2.4.”, we
have also shown thatthe correlation coefficient betweenand y in R2.5. This

important result follows from the combination of Rand R2.5.

R2.7: The marginal density for x and y is Gaussian.
The moment generating function for the marginalsitgnfor x is E{e>*}. The same

function can be expressed from the moment gengrétimction of the joint distribution

1.2 2 2
stsy (05 +258,00,0,+S07))
_ SXHS Yy _ A SX+S,Y y
®(s,,s,) =Ee V=¥ e? by taking s, = Q
R
When this is done, we geE{eSxX} =e¥e? which is the moment generating

function of univariate Gaussian distribution withanex and variances’. Hence when
we marginalize a joint Gaussian density, then we lavenivariate Gaussian density.

R2.8: The conditional density of x given y for joinly Gaussian variables.
The density of>~< conditioned ony is also Gaussian. This result has significant

importance in estimation theory.
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i. Case of scalar random variables.
Here x and y are jointly Gaussian distributed with the followidgnsity.

— )2 _ _ e
fy(Xy)= 1 oxd - 12 (x &)_20<MJW %Mfyfﬂ
210,01 PP 20-p%)| o7 0.0, p
i i _ y(xy) . _
The goal is to findf, (y|x ) f,(Y|X) = 0 We explicitly calculate this
(X

ratio and show that the conditional density is thei€<s&an distribution. Without any
loss of generality, we assumeg = 4, = t@ simplify the algebra. Ifu, = ¢, = 0s
not true, then the following substitutions should tede in all expressions,
X - (X=g)andy - (X=4, ).
Without a further ado, we start the calculation:

X2

X
X2
207

o,

1 e
fy(xy) _2m0,0,{1-p
£,

1
2(1- p%)

fy|x(y | X) = 1
——eX

N 270, {
X2

: 1
Let's re-express the exponent in the numerator——| —
O-X

21— p*)

_ 1
T 2- p*)o;| o

- 1
20~ p*)o;

- 1
20~ p*)o,

2
o] |
O-X
2
] X
+

|

g
y-p—-X
g

X

2

B 1
Note that in the second line we have added and stddtkdhe same term shown with
curly brackets, i.e{..}2 This process is called completion to a sguaNow
f,x(Y]X) can be easily written as follows:

207
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fo(yI0=—— T exg-— [y—pﬁxf
" Voo i-p? | 20-pY)os\” T o,

X

. s g
Hence the conditional distribution N(,o?y x,(l—,oz)ajj.

Case of Multiple Observations (Multivariate Gaussias)
Here y and x is jointly Gaussian distributed. In this casg,is a scalar Gaussian

random variable and is a N x 1 Gaussian vector. As in the previousecdothy

and x are assumed to be zero mean without any loswérglity. The goal is to

_ (09
£

given the observation vector:

expressf,, (y|X

, that is “update” the a-priori pdf foy, that is N(O, 0'5)

1 exr{—lzTC’lzj
fy (%Y) _ (\/ZT)N+1|CZ|% 2

f X) =
y|x(y| ) fX(X) 1 1 T
ﬁex _EX Cx X
Wr e,/
Here z is the concatenation of and y, z = {XN”} . C, and C, is the
B ) - y (N+1)x1

covariance matrix oz and x, respectively. Then as in the scalar the problémm,
exponent in the numerator can be expressed asvillo

1zTC‘lz:[X yl Co | T
) z r.T 0.2 y

Xy y
In the equation above,, = E{xy ik the cross-correlation of observations gnd'he

matrix inverse in the equation above can be taksinguthe partitioned matrix
inversion lemma.

There are various type of matrix inversion lemntlagy are abundant in books but for
the sake of simplicity we present a screenshot wkhpage illustrating the form of
lemma that we would like to implement.
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Special Case 1

Leta (m+ 1) x (m + 1) matrix M be partitionsd into a block form:

_ | A b }m
M-[bﬂ"c h
e
m 1

Then the imverse of M is

[ A+ 1A-'bbTA —1A-'b

1 o _1a-
_| (A-ipb7) " 1A lbl _ [ e A
“EbA k

M-l=
1y 1
gbra™ E

where k=c —bTA-1h.

Partitioned Matrix Inversion Lemma
A screenshot fromttp://www.cs.nthu.edu.tw/~jang/book/addenda/mdtiratinv/

SubstitutingA with C,_ and b withr,,, we can expres€;' as follows using the lemma:

Xy !

C r - C;l + 1 C;lrxy rr C;l - 1 C>:lrxy
C_l _ [ X xyj| _ k xy k

’ r;ry 0-5 —erC;l 1
k ~ k
Then f (y |x) can be written as:
1 - 1 1.2
exp-—=zC,z exp-—=zC,z
fy (X, Y) ny2 p(z j p(z j
fy|x(ylx)= . = | | =K

0 V2]7-|Cz|% exr{—leC;lxj exp(—leC;lxj
2 2
In the last equation, K denotes a constant scdlae. ratio of exr{—%zTCsz and

exp{—%xTCij can be written more explicitly as follows:

- 1o ollly

exp{—;zTCfZJ_ eX;{‘;[xT y]C;l{);,D ool - l[xT y] oo Cl 0l\[x
ex - L0 {; y]{cg 3}‘*@ ”{2 ( [ M }}
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With the substitution ofC;*, we get the following for the matrix in the quairgroduct:
C—l _ C_l O 1 Cx r.xyrxyC:xl Cx r.xy
’ 0 0| k rnct 1

xy X
with k = a -1} C'r,,. Then the density becomes:

Xy ~x 'xy *

1 1qa j
exp{—z C'z L 4
2 z CX rX rX CX _CX rX X
f(y[x)=K = Kexp{ [x ] |: i VM }}

-1
exp{— ; xTC;lxj ~1yC 1

Xy X
The last relation can be further reduced to
f(YIX)= Kexp{ 21k (x cl rxeryC X — 2yrxTyC;1x+y2)}

This not-so-friendly relation is our old friendwolf’'s clothing. To recognize our friend,
we just need to defing = erCX X, and rewrite the same expression as follows:

fox(Y]X) = Kexp{ k(92—23/9+y2)}= Kexp{—z—lk(Y‘g’)Z}

Hence the conditional density isl(r Clx,0; —r Clr ) (This is one of the most

Xy =X Xy =X °Xy
important results for the estimation theory. ThHi®ws that the linear minimum mean
square error estimator (a topic of EE503) is theddmnal mean which is the optimal
estimator for the general minimum mean square esbimation having no linearity
constraints.)




